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Abstract. The localization behaviour of the anisotropic extended double-exchange model with
both diagonal and spin-orientation-dependent off-diagonal disorder is investigated using the
transfer-matrix method. The anisotropy is described by different in-plane and inter-plane hopping
integrals. By using a mean-field distribution of the spin orientation, the localization length of
electrons is calculated as a function of temperature. It is found that the metal–insulator transition
temperaturetMIT of the system increases with decreasing degree of anisotropyγ . On the insulating
side, the localization length fort close totMIT varies asξ ∝ (t − tMIT )

−ν . We also calculate
the value ofν for variousγ -values. The comparison of the results obtained and the experimental
measurements for the layered mixed-valence Mn oxides is discussed.

1. Introduction

The effects of anisotropy on the properties of disordered systems have received considerable
attention [1–7] in recent years. This is due to the fact that there are a large variety of materials
that are highly anisotropic, e.g., random superlattices, high-Tc superconducting materials,
and layered magnetic compounds. From numerical calculations in the case of anisotropic
systems with random on-site energies, Zambetakiet al [6] have shown that although the critical
behaviour is the same in both the in-plane and inter-plane directions, the localization lengths
are different. These results were used to explain the anisotropic normal-state behaviour of the
high-Tc superconductors. Recently, Mildeet al[7] studied the metal–insulator transition (MIT)
in anisotropic systems by using multifractal analysis. Their results show that the eigenstates
of the Hamiltonian exhibit multifractal behaviour at the MIT even for strong anisotropy.

Most of the previously investigated anisotropic systems are described by Anderson Hamil-
tonians with diagonal disorder. Recent studies on the isotropic double-exchange (DE) model
show that off-diagonal randomness may play an important role in explaining the anomalous
transport behaviour in the mixed-valence manganites [8,9]. Since the off-diagonal disorder in
such systems is related to the magnetic order parameter and is therefore temperature dependent,
a disorder-driven metal–insulator transition is expected on increasing the temperature [9]. An
interesting question to ask is that of what the critical behaviour of such systems is if the
anisotropy is incorporated.

In the present paper, we study the localization behaviour of a three-dimensional (3D)
disordered anisotropic system described by the simplified DE Hamiltonian with both diagonal
and off-diagonal disorder. Anisotropy is introduced by taking different hopping integrals along
perpendicular and parallel directions, labelled ast⊥ andt‖, respectively. The strength of the
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anisotropy is characterized by the parameterγ , defined as 1− t⊥/t‖. In the DE Hamiltonian
the hopping integrals are related to the orientations of the local spins, which are governed by
the ferromagnetic phase transition and thus are temperature dependent. Thus, the strength
of the off-diagonal disorder is also temperature dependent. Under certain conditions this
may lead to a MIT at a critical temperature. By using the transfer-matrix technique [10]
and assuming a mean-field distribution for the spin orientation [9], the localization length is
calculated as a function of temperature for different anisotropy strengthsγ . It is found that
the MIT temperaturetMIT increases with decreasing anisotropyγ and approaches its isotropic
value in the limitγ → 0. On the insulating side, the localization length fort close totMIT varies
asξ ∝ (t− tMIT )

−ν . We also calculate the value ofν for variousγ -values. From the finite-size
scaling, the calculated exponentν varies between 1.2 and 2 with rather large error bars. This
work is also motivated by current experimental studies of layered mixed-valence Mn oxides
with anisotropic exchange interactions, which exhibit some unusual properties [11,12].

2. The model and formalism

The system that we consider is described by an anisotropic extended DE model [8,9]:

H = −
∑
ij

Vij d
+
i dj +

∑
i

εid
+
i di . (1)

Here the first term is the DE Hamiltonian, in whichVij is the effective transfer integral for
nearest-neighbouring Mn sites. It was proposed [13,14] thatVij has the form

Vij = V ′ij
{

cos

(
θi

2

)
cos

(
θj

2

)
+ sin

(
θi

2

)
sin

(
θj

2

)
exp[−i(φi − φj )]

}
(2)

where(θi, φi) are the polar angles characterizing the orientations of local spins, and theV ′ij
are the transfer integrals in the absence of Hund’s rule coupling and depend on the directions
of the ij -bonds. We assume that the easy axis lies in the magnetic sheets, so all of the local
spins are always in the in-plane directionsx andy and their orientations are specified byθi
only [15] if the polar axis is chosen to be in the plane. The anisotropy is characterized by
the difference of the in-plane and inter-plane values ofV ′ij , which are assigned to be 1 and
1− γ , respectively, with the in-plane hopping integral being the energy unit. The parameter
γ ∈ [0, 1] describes the strength of the anisotropy. Forγ = 0 we recover the isotropic
3D case, andγ = 1 corresponds toN independent planes. As in the usual treatment, we
assume all the nonmagnetic randomness to be included effectively in the diagonal disorder in
Hamiltonian (1), where theεi stand for random on-site energies distributed between−W/2 and
W/2. Without the off-diagonal disorder the problem of Anderson localization in anisotropic
systems has been solved by using the transfer-matrix method [6], and the results show that at
the centre of the band the critical disorderWc for γ = 0.9 is approximately 8.0. Wc decreases
if the off-diagonal disorder is switched on in an isotropic system [8]. This value is expected
to be further decreased if the anisotropy and off-diagonal disorder are both taken into account.
So, in order to ensure the occurrence of a MIT in the present system we chooseW = 4 for the
strength of the diagonal disorder.

At the same time, the local spins are coupled with each other via the double-exchange
interactions. In this paper we consider the case of ferromagnetic couplings. In using the
mean-field theory the orientation of a local spin is governed by an effective fieldHeff which
is produced by the other spins in the absence of an external magnetic field. In this way the
energy gain of a spin due to this field is 2µBSeffH cosθ whereµB is the Bohr magneton,Seff
is the effective spin on a Mn site, and the polar axis for measuring angleθ is along the direction
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of the fieldHeff . Thus, at finite temperature the probability distribution of the orientations of
local spins can be expressed in a Maxwell–Boltzmann form [9]:

f (θ) = C exp

(
−2µBSeffHeff cosθ

kBT

)
(3)

whereC is a normalization factor. From this distribution the thermal average〈cosθ〉 can be
calculated as

〈cosθ〉 = L
(

2µBSeffHeff
kBT

)
(4)

where

L(x) = cothx − 1

x

is the Langevin function. In the mean-field scheme the effective field ‘felt’ by a local spin can
be expressed as

Heff = 2gµBSeff 〈cosθ〉 (5)

whereg is a constant depending on the magnetic coupling and coordinate number. By com-
bining equations (3), (4), and (5) one can solve forHeff (T ) for a given temperature. In the
absence of a magnetic field,Heff (T ) vanishes ifT > TC , with

TC = g(2µBSeff )2

3kB
being the Curie temperature. We can rewrite the distribution in the form

f (θ) = C exp

(
−3m cosθ

t

)
. (6)

Here,m = 〈cosθ〉 and t = T/TC are the normalized magnetization and temperature, resp-
ectively. The normalized magnetization is a function oft and can be obtained by solving the
following equation:

m = L
(

3m

t

)
. (7)

Figure 1 shows the probability distribution of the nearest-neighbour transfer integralP(Vij )

for different temperatures. It can be seen that the distribution is broadened on increasing the
temperature in the rangeT 6 TC , implying an increase of the off-diagonal disorder. In order to
illustrate the temperature dependence of the strength of the off-diagonal disorder, in the inset
to figure 1 we plotw, defined as the second-order moment of the distribution, as a function of
temperaturet . One can easily see that att = 0 the local spins are completely ordered and there
is no off-diagonal disorder (w = 0). With increasingt the off-diagonal disorder increases, but
it saturates ift > 1 because above the Curie temperature the magnetizationm = 0 and the
off-diagonal disorder reaches its maximum. So, the contribution of the off-diagonal disorder
to the electron localization increases with temperature only over the range 1> t > 0. In the
range∞ > t > 1, the off-diagonal disorder becomes constant, corresponding to the strongest
and saturated value.

In order to calculate the Lyapunov exponent and localization length within the scheme of
finite-size scaling, we investigate anN ×N ×L bar withL being extremely large. For such a
quasi-1D bar-shaped system of cross sectionN ×N , the Schr̈odinger equation can be written
in the form of the transfer-matrix equation(

ψi+1

ψi

)
= Ti

(
ψi
ψi−1

)
=
(

Hi −I
I 0

)(
ψi
ψi−1

)
(8)
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Figure 1. The probability distribution of the nearest-neighbour transfer integralP(Vij ). Inset: the
off-diagonal disorder strengthw (the second-order moment of the distribution) as a function oft .

whereψi+1 andψi are vectors withN2 components describing the wave-function amplitudes
of planesi + 1 andi, respectively, theN2 × N2 matrix Hi is the sub-Hamiltonian within
the ith plane, andI is a unit matrix. We calculate the Lyapunov exponents for this system
using the transfer-matrix method, in which the Gram–Schmidt orthonormalization procedure
is adopted [10]. The largest localization lengthλN(E, t) for a system with finite widthN is
then given by the inverse of the smallest Lyapunov exponent. In our numerical calculation,
we choose the sample lengthL to be over 104 so that the self-averaging effect automatically
takes care of the ensemble statistical fluctuations.

According to the one-parameter scaling hypothesis [10], the rescaled localization length
3N = λN/N should be a function ofN for given energyE, anisotropyγ , and temperaturet .
It is expected that3N should increase (decrease) on increasingN for the extended (t < tMIT )
(localized (t > tMIT )) cases. At the critical pointt = tMIT , anN -independent fixed-point value
3c is expected that defines the critical temperaturetMIT .

The localization length for infinite systemξ can be determined by using the finite-size
scalingansatz[10]

λN/N = F(ξ/N). (9)

We make a further assumption that this scaling parameterξ(t, γ ) for t close totMIT andt > tMIT

varies asξ ∝ (t − tMIT )
−ν . We may then expand the functionF near the critical point3c for

a givenγ :

λN/N ≈ 3c +AN1/ν(t − tMIT ) (10)

whereA is a constant and

AN1/ν = dF

dt

∣∣∣∣
t=tMIT

. (11)

Therefore, 1/ν can be obtained from the slope of the linear relationship between ln dF/dt and
lnN at t = tMIT . In this paper we use four values ofN (=4, 6, 8, and 10) to calculate the
exponentν for eachγ . In the following, we restrict ourselves to calculation at the band centre
(E = 0), for simplicity.
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Figure 2. The rescaled localization length3N = λN/N as a function oft for γ = 0.9 withW = 4
for propagation in the perpendicular direction. Inset: the scaling functionλN/N = F(ξ/N) for
γ = 0.9 in the perpendicular direction.
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Figure 3. As figure 2, but for propagation in the parallel directions.

3. Numerical results and discussion

In figure 2 and figure 3 we display the rescaled localization lengthλN(t)/N as a function
of temperaturet with γ = 0.9 andW = 4 for the perpendicular and parallel directions,
respectively. The data are calculated for different bar widthsN with a statistical accuracy of
0.25%. The MIT is indicated by the common crossing point which shows the same critical
temperaturetMIT ' 0.4 for both propagation directions. However, theN -independent fixed-
point values3c are different for these two directions. This confirms the conclusion from
the single-parameter scaling theory, and coincides with the results for the anisotropic systems
with only diagonal disorder [6]. It seems that electrons are less mobile in the perpendicular
direction than in the parallel direction, corresponding to a larger localization length in the
in-plane directions. By introducing the scaling parameterξ , we have confirmed thatλN/N is
indeed a single-parameter function ofξ/N (see the insets of figure 2 and figure 3).
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Figure 4. The rescaled localization length
λN/N as a function oft for γ = 0.5 with
W = 4 for propagation in the perpendicular
direction.

Table 1. The MIT temperaturetMIT and exponentν for systems withW = 4 and different aniso-
tropiesγ .

γ 0.9 0.7 0.5 0.3 0.1
tMIT 0.4 0.46 0.54 0.66 0.73
ν 1.92± 0.10 1.63± 0.22 1.45± 0.25 1.32± 0.23 1.22± 0.18

It is expected that the critical temperature should be shifted to higher temperature by
decreasing the anisotropy, because the extended states are more favourable in this situation.
This is exactly what we observe in our calculation. Presented in figure 4 is the rescaled
localization lengthλN/N versust with γ = 0.5 andW = 4 for propagation along the
perpendicular direction. We also perform the calculation of the critical temperaturetMIT and
exponentν for more values ofγ . In table 1 we show theγ -dependence oftMIT andν. One can
see that the critical temperature moves towards higher temperature as the anisotropy decreases
for systems with fixed diagonal disorderW . However, the exponentν slightly decreases with
decreasing strength of anisotropyγ . As the localization length is related to temperature via
the temperature dependence of the strength of the off-diagonal disorder, one may expect that
the value ofν should be related to the exponentν ′ in the zero-temperature transition defined by
ξ ∝ (w−wc)−ν ′ . The value ofν ′ has been calculated previously for the anisotropic Anderson
model with diagonal disorder and a similarγ -dependence has been found [2, 16]. The change
of ν ′ has been attributed to the large error in such a finite-size scaling calculation [2] and to
the dimensionality crossover between 2D and 3D that occurs on changingγ [16].

In the present model the off-diagonal disorder is temperature dependent over the range
1 > t > 0, so we can find a critical temperature for the MIT. This is different from the
case for the Anderson model with quenched disorder, in which the disorder is temperature
independent and the MIT corresponds to a zero-temperature phase transition. Since the off-
diagonal disorder becomes saturated fort > 1, the MIT temperature should be lower than
the Curie temperature ifγ 6= 0. At the same time,tMIT will decrease when the diagonal
disorderW increases because the localized states are more favourable in this situation. IfW

is large enough so that the states are already localized without off-diagonal disorder, as in the
calculation in reference [6],tMIT becomes zero. On the other hand, if the diagonal disorderW

is too weak, the largest (saturated) off-diagonal disorder may be not able to localize the states,
and also one cannot find a finitetMIT .
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For t > tMIT , the system is in the insulator phase which means:

(a) The localization length is smaller than the system size.
(b) The transmission of electrons decays exponentially and the conductivity is very low.
(c) The transport relies on the variable-range hopping mechanism or other thermal excitation

mechanisms of the carriers.

Usually in this phase the conductivity increases with increasing temperature, but an opposite
situation may arise for the rangetMIT 6 t 6 1, since the off-diagonal disorder increases with
increasing temperature and suppresses the conductivity.

In contrast, fort 6 tMIT , the system is in the metallic phase which implies:

(a) The localization length is larger than the system size even in the thermodynamical limit.
(b) The transmission of electrons is large and the conductivity is high.
(c) The conductivity decreases with increasing temperature due to the thermal phonon

scattering and also due to the increasing off-diagonal disorder.

It is interesting to note that attMIT the transport properties may be dramatically changed by
applying a magnetic field, since it will change the alignment of the local spins and change the
off-diagonal disorder. From this, some kind of ‘colossal magnetoresistance’ may be produced,
and the behaviour of the anisotropic magnetic Mn oxides can be explained qualitatively.

4. Summary

In summary, we have numerically studied, by the transfer-matrix method technique, the local-
ization properties of anisotropic systems described by the extended DE Hamiltonian. We
found that the MIT temperature is independent of the propagation directions and increases
with decreasing anisotropyγ . This behaviour is attributed to the temperature dependence
of the off-diagonal disorder due to the exchange interactions among the local spins. We
have also calculated the temperature dependence of the localization length near the critical
temperature, and a slightlyγ -dependent exponentν is obtained from the calculation. This
exponent is related to the localization length exponent in the zero-temperature transition of
the anisotropic Anderson disorder model, for which a similar behaviour was found previously.
The dimensionality crossover between 2D and 3D might be one of the reasons for theγ -
dependence oftMIT andν. In spite of the temperature dependence of the off-diagonal disorder,
the MIT in this model is eventually driven by the change of the disorder strength. As a result,
it may be expected that the spectral behaviour and statistical distribution of quantities of a
given phase (metal or insulator) will be similar to those of the corresponding phase of the
Anderson model. It would interesting to perform level statistics and multifractality studies on
this finite-temperature transition in the future.
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